ncteq is hosted by Hepforge, IPPP Durham

nCTEQ15HQ results:

Grids:

  • nCTEQ15HQ bound proton grids:  
    • Full PDF uncertainty sets: here (88 Mb)
    • Mathematica ManeParse Testing Code for nCTEQ15HQ: here (13 Mb)
  • nCTEQ15HQ_FullNuc full nucleus grids   (Z fp + N fn)/A
    • Full PDF uncertainty sets: here (82 Mb)
  • doQcdCase Bash Script: Some older grids had a typo in the .info file: "OrderQcd" should be "OrderQCD" The zip files have been updated, but this bash script will fix older files.

If you use any of the grids provided here, please cite

A clear understanding of nuclear parton distribution functions (nPDFs) plays a crucial role in the interpretation of collider data taken at the Relativistic Heavy Ion Collider (RHIC), the Large Hadron Collider (LHC) and in the near future at the Electron-Ion Collider (EIC). Even with the recent inclusions of vector boson and light meson production data, the uncertainty of the gluon PDF remains substantial and limits the interpretation of heavy ion collision data. To obtain new constraints on the nuclear gluon PDF, we extend our recent nCTEQ15WZ+SIH analysis to inclusive quarkonium and open heavy-flavor meson production data from the LHC. This vast new data set covers a wide kinematic range and puts strong constraints on the nuclear gluon PDF down to x.le.10−5. The theoretical predictions for these data sets are obtained from a data-driven approach, where proton-proton data are used to determine effective scattering matrix elements. This approach is validated with detailed comparisons to existing next-to-leading order (NLO) calculations in non-relativistic QCD (NRQCD) for quarkonia and in the general-mass variable-flavor-number scheme (GMVFNS) for the open heavy-flavored mesons. In addition, the uncertainties from the data-driven approach are determined using the Hessian method and accounted for in the PDF fits. This extension of our previous analyses represents an important step toward the next generation of PDFs not only by including new data sets, but also by exploring new methods for future analyses.


nCTEQ PDFs

nCTEQ PDFs


CHI2 Table

Chi2 Table


Data Comparison

Data Comparison



for comments or requests contact K.Kovarik karol.kovarik@uni-muenster.de
                                 F.Olness  olness@smu.edu